Автомобили с газовыми турбинами — история и фото

Автомобили с газовыми турбинами — история и фото

Иногда попадаются фотографии старых автомобилей, которые не сразу отличишь от работ художника-абстракциониста. Чаще это просто необычный ракурс обычной машины — но иногда нечто совершенно особое.

Это первый европейский автомобиль с газотурбинным двигателем Fiat Turbina, представленный на Туринском автосалоне 1954 года.

Это был довольно длительный проект Фиата: исследования начались еще в 1948 году и закончились на заводском испытательном треке в 1954 году. Заявленная мощность двигателя была 300 л.с. (220 kW) при 22000 оборотах в минуту, а расчетная максимальная скорость — около 250 км / ч. Интересно также, что этому прототипу Фиата принадлежал рекорд для самого низкого коэффициента аэродинамического сопротивления (Сх=0,14) в течение 30 лет.

Но, к сожалению, Fiat Turbina был признан бесперспективным — несмотря на шесть лет разработки и совершенную аэродинамику. Очень высокий расход топлива и постоянные проблемы с перегревом газотурбинного двигателя поставили крест на этом проекте, а интересный прототип тихо переехал в заводской музей Фиата в Турине, где и стоит по сей день.

Самолет с износом тормозов
Автомобильные ГТД НАМИ

После Великой отечественной войны в НАМИ возобновились работы по газотурбинным двигателям, начатые в середине 1920-х годов под руководством профессора Н.Р. Брилинга. Приказом № 271 по Министерству автомобильной промышленности 12 июля 1946 г. Александра Александровича Душкевича назначили главным конструктором и заведующим бюро газотурбинных автомобилей. Николай Романович Брилинг стал научным консультантом бюро. С этого времени развернулась самая удивительная история одного из самых уникальных в мире автобусов.

C 1950 г. работы НАМИ по газотурбинным двигателям включены в Государственный план важнейших научно-исследовательских работ, намечен первый пятилетний план работ. В течение 1951–1952 гг. в НАМИ была спроектирована и оборудована лаборатория, обеспечивающая разрешение ряда первоочередных вопросов. Новые технологии обработки металлов и керамики в теории развития скоростей магистрального транспорта тогда сулили немыслимые выгоды, а дешевизна топлива и налаженный крекинг нефти – баснословную прибыль. Не последнюю роль в этом играли и новые виды газотурбинных двигателей. Для оборудования лаборатории были разработаны и на заводе опытных конструкций института изготовлены 12 стендов и установок. Для испытаний турбин и компрессоров первоначально использовали авиационный поршневой двигатель АМ-38Ф, поэтому коллег из ГДР попросили сделать установку для испытания газотурбинных двигателей мощностью до 500 л.с. Кто бы мог подумать, что это станет одной из самых туманных разработок самой секретной лаборатории, где испытывались самые передовые наземные технологии.

В 1952 г. в НАМИ для работы над газотурбинными двигателями было создано конструкторско-экспериментальное бюро (КЭБ), трансформировавшееся через три года в СКБ-2. Бюро возглавил А. А. Душкевич. Из авиационного КБ Микулина в КЭБ перешел М. А. Коссов.

Первым разработали газотурбинный двигатель НАМИ-О50. Затем был изготовлен и испытан первый двухвальный автомобильный газотурбинный двигатель – АГТД НАМИ-О51. За этим двигателем М. Коссов и В. Фисенко разработали модификации НАМИ-О52 и НАМИ-О53.

Для проведения широких дорожных экспериментально-эксплуатационных испытаний газотурбинной силовой установки в НАМИ была создана газотурбинная дорожная лаборатория на базе междугородного автобуса ЗИЛ-127, на которой установили спроектированный и построенный в НАМИ газотурбинный двигатель ТурбоНАМИ-О53. Автомобильный газотурбинный двигатель ТурбоНАМИ-О53 № 1 был спроектирован в 1956 г. и изготовлен в 1957-м. Перед установкой на автобус он прошел доводочные и стендовые испытания в объеме только 75 ч. Требование срочно установить недоработанный двигатель на автобус исходило от министерских чиновников, ответственных за прогресс и науку. Сам ГТД был для них лишь клубком трубок.

Специальную коробку передач для этого двигателя спроектировали на ЗИЛе под руководством П. С. Фомина. Она имела прямую и понижающую передачи. Чтобы исключить возможность разноса турбины, переключение ступеней осуществлялось без разрыва мощности, и вал тяговой турбины всегда находился под нагрузкой. Это вызывало значительные усилия для переключения передач, поэтому применили силовые пневмоцилиндры. Подачей воздуха в цилиндры управляли золотниковые клапаны. Перемещение золотников осуществлялось реле-солиноидами.

История началась в Англии в 1791 г. с выданного патента на газовую турбину. Первая турбина была сконструирована и построена только в 1872 г., а испытание двигателя было проведено лишь в 1900–1904 гг. Это была многоступенчатая реактивная турбина с многоступенчатым компрессором, работавшая от горячего воздуха. Успеха турбина не имела, так как ее КПД был очень низким. В 1900 г. фирма Brown Boveri впервые построила турбину с центробежным компрессором. Это был 3-цилиндровый компрессор с ротором из последовательно установленных 25 дисков. Он обслуживал турбину, работающую на парафинистой нефти. КПД установки оказался настолько низким, что практической отдачи почти не было – отдача турбины поглощалась компрессором. Чтобы поднять КПД, в 1905 г. Гольцварт разработал конструкцию турбины постоянного объема. Только в 1928 г. в Brown Boveri построили вполне работоспособную турбину, которая в 1933 г. была установлена на одном из сталелитейных заводов.

Несмотря на большое количество построенных к 1950-м автомобильных газотурбинных двигателей, сведения об их эксплуатационных свойствах были скудными. Стало известно лишь о дорожных испытаниях двигателей Boeing 502-2 на тягаче Kenworth, General Motors GMT-305 и отрывочные сведения об испытаниях на автомобилях двигателей Rover, Renault.

Испытания автомобиля с ГТД-приводом проводились в СССР впервые. Программой были предусмотрены работы по выявлению особенностей эксплуатации, поведения силовой установки и освоению вождения автобуса с таким двигателем.

Управление ими производилось водителем с помощью трехпозиционного переключателя, находившегося на щитке приборов.

К стандартному щитку приборов добавили манометр давления топлива перед форсунками, указатели числа оборотов турбокомпрессора и тяговой турбины, указатель температуры газов на выхлопе. Только последний прибор требовался в условиях нормальной эксплуатации, остальные нужны были для экспериментальнолабораторной установки.

Недоработки в трансмиссии вызвали две аварии двигателя с разносом тяговой турбины, вызванные в первом случае самопроизвольным переключением КП на понижающую передачу на скорости 83 км/ч и во втором – из-за неполного включения заднего хода, когда двигатель оказался без нагрузки. После второй аварии на автобусе и двигателе была проведена полная ревизия, когда заменили редуктор двигателя с 7,2 на 5,3 с целью предохранения от разноса (возможно, эти происшествия объясняют, почему автобусы на встречающихся снимках в разное время имели несколько вариантов окраски и даже отделки кузова).

Работы по созданию и испытанию газотурбинной дорожной лаборатории проводил коллектив экспериментально-конструкторского отдела под общим руководством научного руководителя отдела А. А. Душкевича. Непосредственное руководство осуществлял главный конструктор двигателя ТурбоНАМИ-О53 к.т. н. М. А. Коссов, В. К. Фесенко руководил конструкторскими работами по силовой установке и дорожными испытаниями, работы по камере сгорания проводила инженер К. С. Козловская. Проточная часть турбин и облопачивание разработаны М. П. Беляковым, а системы автоматического регулирования – под руководством Н. Н. Захарова.

Газотурбинный двигатель развивал максимальную мощность 350 л.с. Его сухая масса составляла лишь 572 кг, а дизеля ЯМЗ-206Д – 1060 кг. В дальнейшем, правда, масса автобуса с газотурбинным двигателем увеличилась в сравнении с первоначальным вариантом почти на полтонны из-за применения шумопоглощающих приспособлений. Их испытания проводили в лаборатории шумоглушения НАМИ под руководством к. т. н. В. Е. Кошкина. Однако задача по облегчению этих устройств не ставилась, а основная цель была – доказать право на существование новинки!

Дорожные испытания в НАМИ двигателя ТурбоНАМИ-О53 проводились в два этапа. Из-за новизны задачи и отсутствия опыта как в создании автомобильной газотурбинной силовой установки, так и ее эксплуатации 1-й этап испытаний, осуществленный в 1958–1959 гг., был ограничен пробегом 5000 км. В этих конструкторских, доводочных и испытательных работах принимали участие инженеры В. В. Микрюков, В. П. Гельбрас-Аксенов, М. Ф. Климанова, К. А. Крапивенцева, техник 3. И. Бодрова, ст. механики Н. В. Горячев, А. И. Артамонов, В. М. Копейкин. Снятие динамических и моментных характеристик производилось под руководством доцента МАМИ к. т. н. А. П. Кузнецова. Все производственные работы выполняли на заводе опытных конструкций НАМИ.

Дорожные испытания 1-го этапа позволили наметить и осуществить ряд технических улучшений как в конструкции собственно двигателя, так и в элементах силовой установки. Особенно это коснулось топливной и масляных систем, шумоглушительных устройств, систем всасывания и выхлопа.

Емкость маслоподающей системы вмещала около 40 л. Ввиду отсутствия водяной системы масло использовалось и для охлаждения двигателя. На автобусе в качестве масляного радиатора использовали водяной радиатор автомобиля ЗИЛ-150В, который отводил до 60 000 ккал/ч. Как подтвердил впоследствии опыт эксплуатации, он был слишком, как говорят инженеры, переразмерен: на охлаждение ГТД требуется в 8–12 раз меньше площади, поэтому радиатор прикрыли щитом.

Первые запуски двигателя на автобусе выявили значительную вибрацию двигателя, которая достигала ужасающих 10–11 g, а в некоторых случаях доходила до 17 g. Задача снижения уровня вибраций решилась изменением конструкции двигателя, направленной на увеличение жесткости системы ротор-корпус. В результате виброперегрузки уменьшились до 0,5–2,0 g и не представляли уже никакой опасности. Вторая проблема касалась скорости: при достижении 150 км/ч автобус выходил из-под контроля.

Невзирая на впервые установленную автоматическую систему регулирования воздуха в задних шинах автобуса ходовая часть не была рассчитана на подобные скорости, и максимальный конструкционный предел ограничили теоретически возможными 200 км/ч.

Установка ГТД потребовала изменения систем всасывания и выхлопа. Для уменьшения содержания пыли в воздухе, поступающем в двигатель, воздухоборник разместили на крыше автобуса. В горизонтальной части он имел внутреннюю перегородку, разделяющую его на нижний и верхний каналы. Левее с впускным каналом размещался выхлопной патрубок двигателя с эжектирующим соплом. В зазор между ним и стенками канала подсасывался воздух из моторного отсека. Выхлоп осуществлялся вверх.

На первом этапе запуск газотурбинного двигателя осуществлял автомобильный стартер СТ-25, который впоследствии заменили на авиационный стартер-генератор ГСР-СТ-6000А, который, как предполагалось, можно было запитывать на автостанциях. Он обеспечивал более быстрый пуск. Длительность пуска составляла 3–5 секунд и сильно затягивалась при запуске двигателя на дизельном топливе, особенно при низких температурах. В целом двигатель ТурбоНАМИ-О53 был малотребователен к качеству топлива и работал на бензине, керосине и дизельном топливе.

Второй этап испытаний – 10 000 км пробега – был проведен в августе–ноябре 1961 г. В течение этого этапа его силовая установка проработала почти без дефектов, полностью оправдав все введенные улучшения. На этом этапе испытаний мощность газотурбинного двигателя была понижена до 180 л.с., что соответствовало мощности дизеля ЯМЗ-206, установленного на серийных автобусах ЗИЛ-127. Это позволило сопоставить динамические качества автобуса с двигателем ТурбоНАМИ-О53. На испытаниях скорость автобуса доходила до 130 км/ч и длительная – на уровне 80–100 км/ч. Число оборотов турбокомпрессора колебалось от 10 000 на малом газу до 20 200 мин –1 , а тяговой турбины – от 0 на стоянке до 16 500 мин –1 . Непрерывная длительность испытаний доходила до 10 часов, что было связано с охватом максимальных среднесуточных температур. В этих условиях движение 13-тонного автобуса на пониженной передаче осуществлялось до скорости 40–60 км/ч. Число переключений передач на шоссе по сравнению с числом требуемых переключений для автобуса с поршневым двигателем было значительно меньше. Автобус с газотурбинным двигателем мог разгоняться только на прямой передаче, однако при этом движение начиналось спустя 6–8 с после нажатия на педаль подачи топлива. Для улучшения разгона с места автобус на кратковременных стоянках удерживался на тормозах, а турбокомпрессор – на средних оборотах. При этом был необходим нажим на обе педали одновременно (!), что было неудобно, так как обе педали располагались справа. Из-за того что в конструкциях двигателя и КП автобуса не применялись специальные устройства, дающие возможность тормозить двигателем, в течение испытаний наблюдался повышенный износ тормозов…

Это должен знать каждый водитель:  Автоправо какого размера должны быть дублирующие номера на борту грузового автомобиля

Автомобили тоже летают. только низенько-низенько

В издании «85 лет НАМИ», вышедшем в прошлом году, на с. 280 встречается и другое обозначение НАМИ-О53 – ТурбоНАМИ-127. Как оказалось, испытания конструкций АГТД НАМИ, апробированные на автобусах ЗИЛ-127 проводили на автобусах и в последующие годы. В 1978 году на ХХ Международной выставке-ярмарке в Брно (ЧССР) был представлен турбоэлектробус с ГТД НАМИ-0183. Еще через два года был испытан ГТД НАМИ-2Э0163 на автобусе Ikarus-255 с механической КП Autokut. Самый свежий пример использования газовой турбины относится к прошлому году на турбобусе «Тролза-5250» («ГП» № 10, 2008 г., «ГП» № 10, 2008 г.).

Но автобусами дело не ограничивалось. В период 1960–1965 гг. на грузовиках КрАЗ испытывались двигатели НАМИ-О51. Малые АГТД применялись в рекордных автомобилях, для обеспечения энергетики ствольных и ракетных комплексов на установках ПВО «Шилка», «Енисей», «Круг» и «Куб».

История газотурбинных установок

Принцип действия газотурбинных установок был известен уже в XVIII в., а первый газотурбинный двигатель был построен в России инженером П. Д. Кузьминским в 1897—1900 гг. и тогда же прошел предварительные испытания. Полезная мощность от ГТУ была впервые получена в 1906 г.на установке французских инженеров Арменго и’Лемаля.

На первых этапах развития ГТУ в них для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в тубину. В такой камере сгорания температура и давление не постоянны: они резко увеличиваются в момент сгорания топлива.

Со временем выявились несомненные преимущества камер сгорания первого типа. Поэтому в современных газотурбинных установках топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

Первые газотурбинные установки имели низкий КПД, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался КПД газотурбинных установок и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.

В настоящее время газотурбинные установки являются основным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагрузку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя кпд ГТУ ниже кпд паротурбинных установок (при мощности 20—100 МВт кпд ГТУ достигает 20—30%), использование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.
В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные газотурбинные установки. Они позволяют на несколько процентов сократить расход топлива по сравнению с лучшими паротурбинными установками.

Наряду с паротурбинными установками и двигателями внутреннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.

В доменном производстве энергия уходящих газов используется в газовых турбинах, предназначенных для привода воздушных компрессоров, подающих воздух в рабочее пространство домен.

В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транспорте. Так, на быстроходных судах на подводных крыльях и воздушной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в ‘основной двигатель внутреннего сгорания и работающего на его выхлопных газах.

Кроме того, газотурбинные установки служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

Основное Направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет .увеличения температуры и давления газа перед газовой турбиной. С этой Целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы — жаропрочные на основе никеля, керамика и др.

Газотурбинные установки обычно надёжны и просты в эксплуатации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разрушение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

Автомобили с газовыми турбинами — история и фото

Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?

Рис. 1. Принципиальная схема газотурбинного двигателя

На рис. 1 показана принципиальная схема такого двигателя. Ротационный компрессор 9, находящийся на одном валу 8 с газовой турбиной 7, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания 3. Топливный насоc 1, также приводимый в движение от вала турбины, нагнетает топливо в форсунку 2, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат 4 на рабочие лопатки 5 колеса газовой турбины 7 и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок 6. Вал 8 газовой турбины вращается в подшипниках 10.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Наконец, важное значение имеет то обстоятельство, что для питания газотурбинного двигателя используется керосин либо топлива типа дизельных, т.е. более дешевые, чем бензин.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л.с.).
Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°C, а в авиационных турбинах до 800-900°C потому, что еще очень дороги высокожаропрочные металлы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высокоэффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.
Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. На рис. 2 представлена такая схема.

Рис.2. Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами.
Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.
Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис. 3, где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).

Рис. 3. Характеристики крутящего момента двухвального газотурбинного двигателя и поршневого

Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. 3 и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).
Большую перспективу имеет газотурбинный двигатель, схема которого показана на рис. 4. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и лоршневой компрессор, объединенные в общем блоке.

Рис. 4. Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппо-зитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, находящийся в ресивере 6. Воздух вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:

Это должен знать каждый водитель:  Беглецов приравняли к пьяным как изменилось наказание для скрывшихся с места ДТП
Дизель 0,26—0,35
Двигатель карбюраторный, бензиновый, с принудительным зажиганием 0,22—0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12—0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15—0,25
Газовая турбина со свободно-поршневым генератором газа 0,25—0,35

Таким образом, к.п.д. лучших образцов турбин не уступает к.п.д. дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.
Значительных успехов в создании газотурбинных двигателей добилась, пожалуй, американская фирма Дженерал Моторс Компани, ведущая экспериментальные работы с газотурбинным двигателем ХР-21, который был испытан на гоночном автомобиле «Огненная птица» и многоместном междугородном автобусе. Схема этого двухкамерного двигателя, не имеющего теплообменника, представлена на рис. 5.

Рис.5. Схема газотурбинного двигателя ХР-21

Его эффективная мощность составляет 370 л.с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815°C, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.
Автомобиль «Огненная птица» с этим двигателем развивает скорость выше 320 км/час. Его полный вес равен 1270 кг. Расход топлива на максимальной скорости составляет 189,3 л/час, или 59 л на 100 км. Двигатель расположен в задней части автомобиля; привод осуществляется на задние колеса. Отработавшие в двигателе газы выходят в атмосферу через реактивное сопло, в результате чего создается дополнительное тяговое усилие.
Другой газотурбинный двигатель — «Боинг 502-1» (рис. 6) был установлен на тяжелом грузовике. Двигатель развивает мощность 175 л. с.

Рис.6. Газотурбинный двигатель «Боинг-502-1»

Весит он 90,7 кг и занимает небольшое подкапотное пространство. О компактности газотурбинного двигателя можно судить по фотографии (рис. 7), на которой показаны два грузовика, шасси которых одинаковы, но на одном (слева) установлен газотурбинный двигатель, а на другом (справа) — поршневой бензиновый.

Рис. 7. Тяжелые грузовики с различными двигателями

Фирма Крайслер (США) также ведет экспериментальные работы с газотурбинными двигателями. Легковой автомобиль этой фирмы («Плимут») с установленным на нем газотурбинным двигателем мощностью 120 л. с., снабженным теплообменником, расходует 15,9 л топлива на 100 км пробега.
В течение нескольких лет проводит испытания своего газотурбинного спортивно-пассажирского автомобиля мощностью 250 л.с. (рис. 8) итальянская фирма Фиат.

Рис.8. Газотурбинный автомобиль Фиат

Двухступенчатый центробежный нагнетатель газотурбинного двигателя этого автомобиля вращается со скоростью 30 000 об/мин. Степень повышения давления в нагнетателе 4,5:1. Три камеры сгорания подают в турбину газ при температуре 800°C. Тяговая турбина вращается со скоростью до 22 000 об/мин. Вал тяговой турбины пропущен внутри вала компрессора и соединен с редуктором, расположенным спереди двигателя. Двигатель помещается в задней части кузова автомобиля и приводит в движение задние колеса. Общий вес автомобиля — 1000 кг. Двигатель с редуктором, системой передач и дифференциалом весит 258,6 кг. Автомобиль развивает скорость до 240 км/час.
Английская фирма Ровер одна из первых начала заниматься газотурбинными двигателями (1948 г.). Сейчас она подготовила два новых экспериментальных автомобиля с газотурбинными двигателями. Один из них — «Джет-1» с двигателем мощностью 200 л.с. предназначается для спортивных целей. Другой (рис. 9) — пассажирский, с двигателем мощностью 120 л. с., имеющим теплообменник; вал компрессора этого двигателя вращается со скоростью 50 000 об/мин, а вал тяговой турбины — до 30 000 об/мин. Автомобиль расходует 16,9 л топлива на 100 км пробега.

Рис.9. Газотурбинный автомобиль Ровер

Разносторонние работы в области газотурбинных автомобилей проводятся также и во Франции. Так, фирма Сосьете Турбомека выпустила газотурбинный автомобильный двигатель с одноступенчатым радиальным компрессором и кольцевой камерой сгорания, причем горючее подводится по валу компрессора (рис. 11).

Рис. 11. Разрез малой турбины «Турбомека»: 1 — вход воздуха; 2 — компрессор; 3 — камера сгорания; 4 — турбина привода компрессора; 5 — тяговая турбина; 6 — коробка передач; 7 — управление двигателем

Установка запроектирована без теплообменника и развивает мощность до 300 л .с., расходуя 440 г/л.с. в час. Она весит 100 кг, т.е. около 0,36 кг/л. с. Число оборотов компрессора составляет 35 000 в минуту, турбины — 27 000 об/мин. Температура входящего в турбину газа достигает 820°C.
Для 10-тонного грузовика, предназначенного к эксплуатации в трудных условиях, французская фирма Ляфли создала газотурбинный агрегат мощностью 180—200 л.с. с одноступенчатым радиальным компрессором, без теплообменника. Рабочий газ для турбины вырабатывается в двух камерах сгорания. Вес агрегата составляет 205 кг, что соответствует 1,1 кг/л.с. Расход топлива не должен превышать 400 г/л.с. в час. Скорость вращения вала компрессора достигает 42 000 об/мин, а турбины — 30 000 об/мин. Входная температура газа равна 800°C.
В последнее время большое внимание привлекают также работы французской фирмы Гочкис, создавшей газотурбинный двигатель с тремя камерами сгорания, мощностью 100 л. с. Автомобиль с этим двигателем (рис. 12) развивает скорость до 200 км/час, расходуя от 40 до 57 л топлива на 100 км пробега. Компрессор двигателя развивает 45 000 об/мин, а вал турбины — 25 000 об/мин.

Рис. 12. Расположение агрегатов в газотурбинном автомобиле фирмы Гочкис: 1 — вход; 2 — центробежный нагнетатель; 3 — стартер; 4 — камера сгорания; 5 — топливный насос; 6 — газовая турбина; 7 — выхлопная труба; 8 — понижающая коробка передач; 9 — шарнирное сцепление; 10 — приводной вал; 11 — фрикционное сцепление; 12 — электромагнитная коробка передач фирмы Коталь; 13 — электромагнитные тормоза; 14 — задняя ось с дифференциалом

В заключение следует упомянуть новый испанский проект, разработанный Центральным автомобильно-техническим институтом в Мадриде (рис. 10). Испанская установка, снабженная двумя теплообменниками, весит 120 кг и развивает мощность 170 л. с., что соответствует 0,7 кг/л.с. Температура газа в турбине составляет 800° Ц. Радиальный двухступенчатый нагнетатель, имеющий степень повышения давления 4,35, развивает 29 000 об/мин, турбина — 24 700 об/мин. Этот газотурбинный двигатель предназначен для установки на автобус; запроектировано заднее расположение двигателя, с подводом воздуха через крышу.

Рис. 10. Испанский газотурбинный двигатель, предназначенный для автобуса: 1 — двухступенчатый нагнетатель; 2 — две независимые турбины; 3 — теплообменник; 4 — вспомогательные агрегаты; 5 — планетарная передача

Есть все основания считать, что газовая турбина, являясь более прогрессивным типом двигателя, уже в ближайшие годы получит распространение на автомобильном транспорте.

Автомобили с газовыми турбинами — история и фото

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

Десять самых крутых автомобилей с газотурбинными двигателями

Газотурбинные двигатели — это невероятная вещь, и их применение не ограничивается лишь самолетами. Мы подобрали для вас очередную десятку

Газотурбинные двигатели — это невероятная вещь, и их применение не ограничивается лишь самолетами. Мы подобрали для вас десять самых интересных наземных транспортных средств, питающихся от огромных турбин.

Jet Corvette. Кастомайзеры очень любят брать моторы от Corvette и устанавливать их на другие машины, чтобы сделать их быстрее. Винс Гранателли подошел к делу с другого конца. Он, наоборот, избавил свой Corvette от V8 в пользу. газотурбинного двигателя Pratt & Whitney ST6B. 880-сильная турбина делает машину самым быстрым Corvette, допущенным к эксплуатации по дорогам общего пользования. Разгон до 100 км/ч осуществляется всего за 3,2 секунды.

Thrust SSC. Невероятный (но еще не завершенный) Bloodhound SSC наверняка возьмет свой рекорд (запланированы 1 600 км/ч), однако оригинальный Thrust SSC по-прежнему является серьезным техническим достижением. Благодаря 110 000 л. с. от двух турбореактивных двигателей Rolls-Royce, Thrust в 1997 году установил сухопутный рекорд скорости на отметке 1 228 км/ч и стал первым автомобилем, преодолевшим звуковой барьер.

Турбинный мотоцикл MTT. Как будто мотоциклы и без этого недостаточно страшны. MTT снабдили свой мотоцикл турбиной Rolls-Royce, которая передает 286 л. с. на заднее колесо. Один из таких принадлежит американскому телеведущему Джею Лено, который описывает его так: «Он веселый, но способен запугать вас до смерти».

Бэтмобиль. Главный транспорт из кинофильмов «Бэтмен» и «Бэтмен возвращается». Построен на шасси Chevrolet Impala. На сегодняшний день существуют компании, которые изготавливают реплики этого бэтмобиля с настоящими газотурбинными двигателями.

Shockwave. Этот седельный тягач Peterbilt оснащен тремя реактивными двигателями Pratt & Whitney J34-48 и однажды разогнался до 605 км/ч. Четверть мили он проезжает за 6,63 секунды, сопровождая свой заезд потрясающим огненным зрелищем!

Big Wind. Это ультимативное средство пожаротушения идеально дополнило бы предыдущий грузовик. Что скажете насчет борьбы с огнем при помощи огня? Big Wind как раз этим и занимается. Он представляет собой два двигателя от МИГ-21, смонтированные на советский танк Т-34. Эти штуки тушили нефтяные пожары в Кувейте во время войны в Персидском заливе. Сначала шесть шлангов гасят огонь, а затем реактивные двигатели нагнетают мощную струю пара, который буквально сдувает пламя с нефти.

Lotus 56. Этот болид имел вертолетный газотурбинный двигатель и был лишен коробки передач, сцепления и системы охлаждения. В 1971 году он дебютировал в Формуле-1. Самой серьёзной проблемой было значительное запаздывание реакции турбины на нажатие газа — поначалу задержка составляла шесть секунд. Это вынуждало пилота открывать газ ещё в торможении перед поворотом. Позднее задержку сократили до трех секунд, но это увеличило расход топлива и стартовый вес. В Сильверстоуне машина отстала на 11 кругов, а в Монце Эмерсону Фиттипальди удалось финишировать восьмым с отставанием в 1 круг. Контрольное взвешивание показало, что Lotus 56 на 101 кг тяжелее машины победителя. Естественно, от него пришлось отказаться.

Газотурбинный автомобиль Chrysler. Эти экспериментальные автомобили так и называют, потому что своего имени у модели не было. Они разрабатывались с 1953 по 1979 годы. За это время Chrysler испытал 7 поколений и построил 77 прототипов. В начале 60-х годов они успешно прошли тесты на дорогах общего пользования, но финансовый кризис в Chrysler и введение новых норм токсичности и расхода топлива помешали запуску модели в массовое производство. Девять машин сохранились в музеях и домашних коллекциях, а остальные были уничтожены.

Это должен знать каждый водитель:  Hyundai Solaris цена вопроса

ГАЗ М20 Аэросани «Север». В 1959 году в вертолетном конструкторском бюро Н. И. Камова был разработан автомобиль-аэросани «Север». Это была поставленная на лыжи «Победа» с авиационным мотором АИ-14 мощностью 260 л. с. Она использовалась как быстроходный транспорт для северных районов страны в зимние периоды. Средняя скорость составляла 35 км/ч. Маршруты проходили по целинному снегу и торосистому льду в морозы до 50 градусов. Аэросани работали вдоль Амура, обслуживали поселки по берегам рек Лена, Обь и Печора.

Трактор. Американцы любят разного рода забавы, и тракторные гонки — одна из них. Главным состязанием является транспортировка трактором тяжеленной платформы на дистанцию 80-100 метров. И тут, конечно, на помощь трактору приходят мощные газотурбинные двигатели.

Автомобили с газовыми турбинами — история и фото

Главная страница » Авто/Мото » Автомобиль с газотурбинными двигателями

Итальянский дизайнер Пьерпаоло Лаззарини на протяжении многих лет занимался разработкой невероятных и даже откровенно странных концепций. Его последняя работа, которая получила название Hover Coupе стала очередной попыткой человечества создать летающий автомобиль. Уникальное транспортное средство динамически соединяет в себе непревзойденный ретро-стиль и технологии будущего.

Для передвижения такое транспортное средство должно будет использовать 4 турбинных двигателя, которые сегодня уже успешно применяются в коммерческих самолетах. Их мощности должно хватать для того, чтобы поднять автомобиль в воздух. Располагаться в транспорте должно от двух до четырех человек.

Газовая турбина. Устройство и принцип действия. Промышленное оборудование

«Турбонаддув», «турбореактивные», «турбовинтовые», — эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК — Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков – «Росатом», «Газпром» и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар — это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, — в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин – сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого – газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, — от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Понравилась статья? Поделиться с друзьями:
Всё про автомобили
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: