3D-балансировка движение без боя

Содержание

Балансировка колес: советы и рекомендации

Немного о балансировке

Заезжая на шиномонтаж, неопытные водители в большинстве случаев ограничиваются заменой резины, не подозревая, что этому действию сопутствует балансировка колес. Что это такое, для чего она нужна? Сейчас попробуем разобраться.

Что такое балансировка колес?

Некоторые считают, что дисбаланс колес может доставить только дискомфорт при езде. В принципе, правильно. Машина с неотбалансированными колесами идет по асфальту, как по грунтовке. Наблюдается сильная тряска и вибрация руля. Однако комфорт здесь не главное.
Но если бы дисбалансировка колес влияла бы только на комфорт, вряд ли бы специалисты уделяли ей столь пристальное внимание. От боя колес в первую очередь страдают основные узлы ходовой части. В частности, ступичные подшипники. Дисбаланс в 20 грамм на колесе в 14 дюймов при скорости автомобиля в пределах 100 км/час эквивалентен по нагрузкам мощным ударам кувалды, бьющим по ступице до восьмисот раз в минуту. Помимо всего прочего, неотбалансированное колесо быстро «съедает» резину. Если нет желания часто менять покрышки, при каждой замене резины должна проводиться балансировка колес.

Динамическая балансировка

Для барабанов, длинных деталей, если они имеют высокое число оборотов, необходима динамическая балансировка, при которой определяются и уменьшаются дисбалансы, характеризующие динамическую неуравновешенность ротора.

Задачей динамической балансировки является обращение оси вращения в главную центральную ось инерции. т.е. такую, при вращении около которой в детали не возникает не только центробежной силы, но и пары сил инерции, зависящей от центробежных моментов инерции ее масс, т.е.

где li— расстояние от i плоскости до плоскости приведения.

Динамическую балансировку производят на ходу, приводя вал в достаточно быстрое вращение, чтобы неуравновешенные центро­бежные силы и пары сил проявили себя в достаточной степени.

Устройство, определяющие дисбалансы на вращающемся роторе, называют станками для динамической балансировки. Прин­цип действия таких станков заключается в измерении (и, возможно, компенсации) либо опорных реакций вращающегося ротора, либо амплитуды и направлений колебаний его оси. Для этой цели ротор устанавливают на подвижную часть станка. Подвижная часть станка, ха­рактеризуемая так называемой паразит­ной массой, устанавливается на опорах, обеспечивающих определенное число сте­пеней свободы для оси ротора.

Принцип действия таких станков различен. Рассмотрим, для примера, одну схему.

Этот станок работает по принципу использо­вания следующего представления о неуравновешенности: неуравно­вешенность вращающейся детали — совокупность некоторой силы и пары сил, получающихся в результате приведения всех центробежных сил к некоторой точке на оси детали.

Силы инерции вращающейся детали при равномерном ее вращении, приведенные к точке на оси вращения (рис.9.4), дают главный вектор этих сил С, равный центро­бежной силе всей детали

и главный момент , проекции которого на оси Х и Усоот­ветственно равны

где Jzy, Jxz — центробежные моменты инерции вращающейся детали относительно осейx и y

. Схема cтанка: Балансируемая деталь устанавливается в подшипни­ках на стойках рамы П (рис.9.5).

Рама может колебаться поочередно от­носительно двух осей: SS продольной (статической) и дд -поперечной (динамической). Пружины служат для предотвращения опрокидывания всей системы и поддержания колебаний в процессе балансировки.

Вначале включается ось дд и остается в качестве опорной ось SS . Балансируемая деталь приводится во вращение.

В результате действия центробежных сил вал вместе со стойками и рамой приходит в колебательное движение вокруг оси SS.

Эти колебания компенсируются установкой временных противове­сов G1 и G2 в торцовых плоскостях, поэтомуих центробежные силы будут удовлетворять условию

Однако, для того, чтобы эти противовесы не увеличивали момен­та первоначальной неуравновешенности Мин , выборих следует подчинить дополнительному условию:

При выполнении этих условий центробежные силы противовесов будут эквивалентны (статически) главному вектору`С сил инерции, приведенных к т. , лежащей непосредственно над ди­намической осью дд колебаний рамы станка.

После постановки противовесов G1 и G2остается неуравновешенной пара сил инерции Мин

Затем выключается осьSS т.е. вал получает возможность под влиянием пары Мин колебаться вокруг динамической оси дд.

Эти колебания компенсируют при помощи двух новых временных противовесов G’1 и G’2, установленных в техже плоскостях, равных по величине и расположенных диаметрально противопо­ложно относительно оси вращения детали.

Центробежные силы этих противовесов для отсутствия колебаний вокруг оси дддолжны удовлетворять условиям:

Затем временные противовесы G’1 и G1 объединяют в один противо­вес GIс центробежной силой C1 и статическим моментом, равным геометрической сумме статических моментов составляющих проти­вовесов, для чего

Аналогично поступаюn и c противовесами G’2и G2в плоскости П

Существуют другие принципы, заложенные в конструкции станков.

На рис.9.6 а,г приведены схемы балансировочных станков с подвижной рамой 4, а на рис.9.6.в — с подвижной рамой 7.

Рама подвешена на пружине 5. На рис.9.6.б приведена схема балансировочного станока с подвижными опорами 6 самого ротора. Схема а характеризуется одной степенью свободы оси ротора, схема б — тремя, а схема в — шестью степенями свободы.

В зависимости от соотношения масс и жесткостей системы станок может быть дорезонансным, резонансным и зарезонансным. В первом — частота враще­ния ротора при балансировке ниже наименьшей собственной частоты коле­баний системы, состоящей из ротора и паразитной массы, во втором — частота вращения ротора при балансировке рав­на собственной частоте колебаний систе­мы, в третьем — частота вращения рото­ра при балансировке выше наибольшей собственной частоты системы.

Дисбаланс измеряют с помощью специальных приборов, принцип дейст­вия которых основан, например, на электромагнитной, механической или иной другой компенсации колебаний. В частности, колебания рамы 4 (сх. г) устраняют, перемещая диск с грузом 16 с помощью винтовой пары 17

Г) д)

. Грузы 15 и 16 приводятся во вращение от двигателя 8 через червяк 11 и червячное колесо 14. Передаточное отношение этой пары равно единице. От двигателя 8 через вал 12 приводится во вращение также ротор 1. Поскольку грузы нахо­дятся в противофазе и вращаются с частотой вращения такой же, как у ротора 1, то они создают компенсирующий момент, фиксируемый по шкале 18. Фаза момента регулируется перемещением червяка 11с помощью винтовой пары 10.

По шкалам 18 и 9 определяют величину корректирующей массы и ее по­ложение. О колебаниях рамы судят с помощью прибора 13. Такое устройство исполь­зуют в резонансных станках.

Более простое устройство — балансировоч­ная головка (сх. д) с самоустанав­ливающимися грузами 19 и 20. Грузы свободно установлены на валу ротора. При разгоне они зафиксированы гайкой 21. В зарезонансном режиме гайку отво­рачивают. Так как векторы силы и пере­мещения находятся в противофазе, то происходит уравновешивание с помощью грузов 19 и 20. Затем грузы снова фиксируют гайкой, останавливают ста­нок и по их положению судят о вели­чине и расположении корректирующей массы.

Высокую точность балансировки можно обеспечить используя лазерные

устройства [12], [13], [14]. Рассмотрим схему и принцип действия одного из

таких устройств [14].

Неуравновешенный ротор 3 (рис.9.7), установ­ленный в подвесе 2, раз гоняют до час­тоты балансировки.

Вращаясь, он вызывает переменные нагрузки в подвесе 2, воспринимаемые измерителем 10 дисбаланса, преобразующим их в элект­рический сигнал, пропорциональный величине и углу дисбаланса, который усиливается усилителем 11 и передает­ся на вибровозбудитель 9. Последний сое­динен с объективом 7 оптической системы 5, вызывая его колебания с частотой вращения ротора 3. Вибро­возбудитель 9 подбирают из условия обеспечения смещения ΔF объектива от расфокусированного положения до сфокусированного подбором длины или жесткости пружины 8.

На рис.9.8 объектив 7 оптической системы 5 показан в исходном (сред­нем) положении, когда луч лазера 4 не сфокусирован на поверхности ро­тора 3. При наличии дисбаланса виб­ровозбудитель 9 осуществляет пере­мещение объектива 7 оптической системы 5, а следовательно и его фоку­са 14, перпендикулярно поверхности ротора 3 так, что его фокус 14 в верхнем крайнем положении совмещается с поверхностью балансируемого ротора 3. Так как фокус 14 объектива 7 оптической системы 5 колеблется синфазно с вращением ротора 3, то в момент этого совмещения ротор 3 повернут к фокусу 14 «тяжелым» местом. Лазер включается в режиме непрерывной генерации импульсов, однако дисбаланс корректируется только при совмещенном положении.

При уменьшении дисбаланса до минимального значения исчезают переменные нагрузки в подвесе 2, прекращаются колебания объектива 7, луч лазера 4 оказывается расфокусированным, и процесс балансировки прекращается.

Вопросы для самоконтроля:

1. Что является задачей динамической балансировки?

2. Как проверить нуждается ли ротор в динамической балансировке?

3. Как осуществляется динамическая балансировка?

4. Какое минимальное количество плоскостей исправления необходимо для выполнения динамической балансировки?

5. Для каких деталей необходима динамическая балансировка?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9393 — | 7309 — или читать все.

188.64.174.86 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Балансировка роторов на месте эксплуатации

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Колебательные силы, действующие в агрегатах на частоте вращения ротора

У каждого вращающегося в подшипниках узла (вала, ротора) можно выделить три оси, от взаимного расположения которых зависят параметры вибрации агрегата, возбуждаемые его ротором. К ним относятся ось вращения, ось инерции и геометрическая ось. Минимальной вибрация оказывается в том случае, если все три оси совпадают, рис. 12.1.

Рис.12.1. Основные оси ротора в составе агрегата: а) оси совпадают — норма, б) ось инерции смещена — необходима балансировка ротора, в) геометрическая ось смещена – необходим ремонт агрегата.

При механической связи двух и более роторов в одном агрегате процесс формирования вибрации агрегата на частоте вращения определяется еще двумя факторами. Это точность совмещения осей вращения этих роторов с расчетными (обычно в линию или параллельно), и точность совмещения осей передачи крутящего момента. Дополнительных колебательных сил на частоте вращения каждого из роторов не возникает, если оси полностью совмещены.

Смещение оси инерции относительно оси вращения приводит к появлению во вращающемся роторе центробежных сил с частотой вращения, действующих на ротор, которые уменьшают путем балансировки ротора с установкой (снятием) балансировочных масс в плоскости коррекции ротора. Результатом балансировки является снижение величины смещения этих осей друг относительно друга, которое в пределе стремится к нулю.

Смещение геометрической оси ротора относительно оси вращения приводит к дополнительному изменению сил взаимодействия ротора с другими подвижными или неподвижными элементами агрегата либо при механическом контакте (элементов механических передач или колес с дорогой), либо через рабочую среду (газ, жидкость, магнитное поле). Это динамическое взаимодействие приводит, как правило, к появлению двух радиальных сил, в том числе и с частотой вращения ротора, приложенных к ротору и другим частям агрегата встречно в радиальном к осям вращения направлении, и/или пульсирующих моментов, приложенных к ним по касательной. Для уменьшения указанных сил необходимо обнаруживать и устранять смещение геометрической оси ротора, преимущественно путем ремонта узлов агрегата. Кроме этого следует производить балансировку элементов механических передач и колес до их установки в агрегат.

Смещение осей вращения двух (и более) механически связанных роторов в агрегате относительно единой линии вала (или относительно их расчетного положения) также приводит к появлению колебательных сил на частоте вращения ротора и ее гармониках. Для снижения этих сил производят центровку и выверку роторов (осей их вращения). Задачи технологии центровки и выверки рассматриваются в следующем разделе настоящего обзора.

Смещение оси передачи крутящего момента (при совпадении оси вращения и геометрической оси полумуфт) часто происходит из-за дефектов упругих элементов или их посадочных мест в муфте и приводит к появлению действующей на ротор радиальной силы с частотой его вращения, зависящей от величины передаваемого крутящего момента. Компенсировать эту силу можно в процессе балансировки ротора, но только на одной выбранной для балансировки нагрузке на агрегат.

Таким образом, в агрегате на частоте вращения ротора могут появляться как центробежные или нецентробежные вращающиеся силы, действующие на ротор, так и пары колебательных сил и пульсирующих моментов разной природы, действующие встречно на ротор и неподвижные узлы агрегата. В этих парах встречных колебательных сил и пульсирующих моментов на частоте вращения ротора при его балансировке на месте путем установки балансировочных масс в плоскости коррекции может быть снижена только одна из составляющих – радиально направленная к ротору и вращающаяся в том же направлении.

Особо следует выделить нецентробежные силы, действующие на частоте вращения коленчатого вала поршневой машины. Это, прежде всего, пульсирующие моменты, прикладываемые к коленчатому валу и корпусу, появляющиеся из-за разброса величины сил, действующих на разные поршни машины, и создающие встречные моментные колебания коленчатого вала и корпуса. Балансировать вращающиеся узлы поршневых машин, в том числе коленчатый вал, следует до сборки машины.

Основные положения балансировки роторов

Балансировка ротора на станке – это операции совмещения осей вращения и инерции ротора, определяемых и контролируемых при вращении ротора, установленного на балансировочный станок.

Балансировка ротора на месте эксплуатации агрегата (балансировка на месте) – это операции снижения вибрации агрегата на частоте вращения ротора путем установки балансировочных масс на вращающиеся части в доступные плоскости коррекции. Балансировка на месте может выполняться с целью обеспечения требуемой вибрации либо для одного (типового) режима работы агрегата (по частоте вращения, нагрузке и т.п.), либо для нескольких, предварительно определяемых режимов его работы.

В идеальном случае – при вращении неуравновешенного ротора на балансировочном станке – на него действуют только центробежные силы с частотой его вращения из-за смещения оси инерции относительно оси вращения. Характеризуется неуравновешенность ротора величинами эксцентриситета е или дисбаланса me, где m— масса ротора. Поскольку неуравновешенность ротора может представлять собой сумму статической и моментной составляющей, см. рис. 12.2. количественные характеристики неуравновешенности могут делить на две составляющие с привязкой к каждой плоскости коррекции или опоре вращения ротора.

Рис.12.2. Виды неуравновешенности ротора — статическая, моментная, динамическая. Тяжелые точки ротора затемнены, легкие точки ротора (места установки балансировочных масс) указаны кружками с цифрами.

Жесткость ротора (или его вала, или подшипников) конечна, и при вращении центробежная сила деформирует его, создавая дополнительный дисбаланс, который суммируется с начальным дисбалансом и растет с ростом частоты вращения ротора. Существует, однако, скорость вращения ротора, называемая критической, после которой направление дополнительного дисбаланса ротора меняется на противоположное. В этом случае суммарный дисбаланс ротора резко уменьшается, ротор начинает вращаться вокруг оси инерции, но геометрическая ось сохраняет деформацию, т.е. вал «бьет» в подшипниках на величину начального эксцентриситета. Этот эффект называется автобалансировкой ротора и используется при проектировании высокооборотных машин для снижения вибрации на рабочей частоте вращения. При этом необходимость балансировки гибкого ротора сохраняется, а ее задачей становится снижение боя вала в подшипниках Ротор таких машин называется гибким, причем ротор всегда относится к гибким, если его критическая частота вращения ниже, чем 1,25 от рабочей частоты его вращения.

Это должен знать каждый водитель:  Nissan Murano просто космос

Эффект автобалансировки ротора используется и в наиболее распространенных зарезонансных балансировочных станках в которых устанавливаются опоры вращения низкой жесткости. В таких станках задачей балансировки на закритических частотах вращения является снижение «боя» вала в каждой из опор. Однако при такой балансировке гибкого ротора, как жесткого, не решается ряд вопросов его балансировки на скоростях вращения, близких к критическим.

Если начальный дисбаланс статический, то и дополнительный из-за прогиба вала – также статический (рис 12.3.), и он начнет компенсироваться после первой критической скорости, при моментном дисбалансе автобалансировка начнется после второй критической скорости, которая выше первой приблизительно в 4 раза. Проектируют же роторы высокооборотных машин обычно так, чтобы первая критическая скорость была ниже частоты вращения ротора, а вторая – находилась посередине между первой и второй гармониками частоты вращения. Таким образом, соотношение между статическим и моментным дисбалансом начинает зависеть от частоты вращения ротора. Соответственно, даже на балансировочных станках при динамической балансировке таких роторов возникают трудности, которые при балансировке на месте достаточно просто преодолеваются только при использовании многоканальных виброизмерительных систем, специальных алгоритмов диагностики и программ балансировки роторов многорежимных механизмов.

Рис.12.3. Форма прогиба ротора на первой и второй критических скоростях вращения

Требования к проведению работ по балансировке роторов

Для балансировки роторов, как на балансировочном станке, так и в составе агрегата на месте его эксплуатации, кроме подготовленного специалиста по балансировке, необходимы:

  • устройство, обеспечивающее вращение ротора – либо балансировочный станок, либо собственный или внешний привод балансируемого агрегата.
  • доступные в процессе балансировки места крепления компенсирующих и пробных масс на роторе в выделенных плоскостях коррекции,
  • средство измерения на частоте вращения ротора амплитуд и фаз либо центробежной силы, в каждой опоре вращения, либо вибрации вала в плоскости опор вращения, либо радиальной вибрации неподвижных частей опор вращения (можно в других контрольных точках) балансируемого агрегата.
  • программное обеспечение для расчета величин и координат установки компенсирующих масс по результатам начальных измерений и измерений на пробных пусках (программа балансировки).

Это основные требования, без которых проводить балансировку невозможно. Но эти требования не учитывают того, что у каждого ротора кроме оси вращения и оси инерции есть геометрическая ось, а у связанных между собой роторов еще и общая ось вращения (линия вала), и ось передачи крутящего момента. Любое их смещение относительно оси вращения одного из роторов приводит к появлению дополнительных сил на частоте вращения, которые могут ограничить возможности балансировки. Поэтому необходимы еще и средства диагностики источников оборотной вибрации, и диагностическая подготовка специалиста по балансировке.

Операции балансировки роторов на месте эксплуатации

Простейшая балансировка жесткого ротора агрегата обычно проводится по вибрации неподвижных частей опор вращения ротора, измеряемой в радиальном к оси вращения направлении на выбранной оператором скорости вращения ротора. Как правило, она проводится на минимальной (но не менее 40-50 об/мин) из возможных скоростей вращения ротора, которую можно стабилизировать на время проведения измерений вибрации. Измеряться могут как параметры нормируемых виброперемещения или виброскорости, так и параметры виброускорения, величина которого обычно не нормируется. Но во всех случаях до начала балансировки ротора на месте эксплуатации и после ее окончания проводятся контрольные измерения величины виброскорости или виброперемещения в стандартных точках контроля вибрации агрегата в номинальном режиме (режимах) работы агрегате и в предписанной для измерений вибрации на этом режиме полосе частот.

Количество точек контроля вибрации при проведении операций балансировки теоретически может быть сведено к одной на каждой опоре вращения, но на практике, с использованием балансировочных программ, не ограничивающих количество точек контроля вибрации, их используется существенно больше. Обычно рекомендуется использовать две точки контроля радиальной к оси вращения вибрации на каждой опоре вращения, с направлениями, отличающимися в плоскости сечения ротора на угол, близкий к 90 угловым градусам. Чаще всего в машинах горизонтального исполнения вибрация измеряется в вертикальном и горизонтальном направлениях. Это позволяет вводить в программы алгоритмы поиска ошибок, совершаемых оператором при последовательном измерении вибрации в точках контроля, не прибегая к повторным пускам агрегата после их обнаружения.

Количество плоскостей коррекции, используемых для балансировки жестких роторов на месте, обычно не превышает количества опор вращения, но часть плоскостей коррекции может оказаться недоступной и их приходится заменять, используя в качестве такой плоскости, например, полумуфту. В этом случае плоскостей коррекции может быть и меньше, и больше количества опор вращения.

Первая операция – измерение начальной вибрации агрегата при выбранной для балансировки скорости вращения. В обязательном порядке измеряются амплитуды и фазы (относительно устанавливаемой на ротор метки) вибрации на частоте вращения ротора. Однако дополнительно рекомендуется измерить и спектр вибрации в каждой точке контроля, чтобы убедиться в том, что выполняемая работа может привести к снижению уровня вибрации до предъявляемых к ней требований. А такой результат возможен, если максимальный (по всем точкам контроля) уровень вибрации на частоте вращения агрегата (по виброскорости) больше уровня других составляющих вибрации в контролируемой полосе частот хотя бы в 2,5-3 раза, а уровни остальных составляющих ниже требований, как минимум в 1,5 раза.

Вторая операция – установка пробной массы в одну из плоскостей коррекции ротора агрегата. Выбирается одна из ближайших к точке контроля с максимальной величиной вибрации на частоте вращения плоскость коррекции. При этом учитывается и доступность этой плоскости коррекции для установки пробной массы, при существенных ограничениях по доступности ее заменяют на другую (ближайшую) плоскость. Пробная масса, если нет априорных данных о ее величине, выбирается такой, чтобы создаваемая ею центробежная сила (на максимальной рабочей частоте вращения) была близка к четверти силы тяжести ротора. Пробную массу желательно устанавливать поближе к легкой точке ротора, для поиска которой оператор должен иметь определенный опыт измерений вибрации или средства измерения диаграммы Боде (фазо-частотной характеристики ротора) на выбеге агрегата после каждого его пуска.

Третья операция – ввод данных начальных измерений вибрации и измерений после первого пуска в программу балансировки для расчета коэффициентов влияния пробной массы на вибрацию в каждой точке контроля. Обычно профессиональные программы балансировки по всем полученным коэффициентам влияния сразу определяют необходимые параметры балансировочных (компенсирующих) масс и ожидаемые уровни вибрации агрегата на частоте вращения ротора. Если ожидаемый результат удовлетворяет оператора, он может установить рассчитанные балансировочные массы в первую плоскость и переходить к контрольному измерению вибрации на следующем пуске. Если нет — выполняется четвертая операция, аналогичная второй – второй пробный пуск с установкой пробной массы во вторую плоскость, а затем и пятая операция, аналогичная третьей – расчет ожидаемой вибрации с установкой двух компенсирующих масс в двух плоскостях коррекции.

После четвертой и пятой операции, могут выполняться шестая и седьмая, также аналогичные второй и третьей операции – до тех пор, пока ожидаемый результат балансировки не удовлетворит оператора, или пока не закончатся все используемые для установки пробных масс плоскости коррекции.

В любой практической ситуации после выполнения контрольных измерений по результатам балансировки с использованием неполного комплекта плоскостей коррекции в случае неудовлетворительного результата балансировка с использованием современных программ может быть продолжена. Балансировочные массы будут рассчитываться по имеющимся коэффициентам влияния, т.е. без повторных пусков с установкой новых пробных масс в те плоскости коррекции, для которых пробные пуски уже были произведены.

Операции повышенной сложности могут использоваться для балансировки роторов на месте в следующих случаях:

  • на первом пуске агрегата после ремонта вращающихся узлов, когда появляется опасность недопустимого роста вибрации в процессе увеличения скорости вращения ротора,
  • при балансировке гибкого ротора.
  • при действии на частоте вращения ротора нецентробежных сил либо из-за дефектов ротора, либо из-за смещения геометрической оси ротора (роторов) или оси передачи крутящего момента относительно оси вращения,

В первом случае типовыми решениями являются предварительная балансировка ротора на балансировочном станке или предварительная низкоскоростная балансировка ротора, которая часто имеет и технические, и экономические преимущества при использовании методов балансировки на нестабильных частотах вращения (на выбеге после частичного разгона ротора).

Для балансировки гибких роторов рекомендуется использовать многоканальные системы балансировки с онлайн анализом вибрации, а в агрегатах с установленными датчиками относительных перемещений вала (проксиметрами) – использование этих датчиков в операциях балансировки.

Для балансировки агрегатов со значительным вкладом в вибрацию на частоте вращения нецентробежных сил рекомендуется использовать методы и средства диагностики источников этих сил, см. следующий раздел. Такого рода диагностику рекомендуется проводить до решения о проведении балансировки эксплуатируемого агрегата, а для агрегатов после ремонта — в процессе виброналадки, начиная с первого пуска.

Подготовка специалистов по балансировке роторов на месте эксплуатации

Минимальный срок подготовки после освоения основ виброконтроля – 18 часов, 3 уровня подготовки с практическим освоением средств и программ балансировки роторов на месте эксплуатации, методов и средств диагностики источников вибрации, возбуждаемой ротором.

  • начальный, с изучением особенностей измерения и анализа вибрации при проведении балансировки и освоением простейших технических средств и программ двухплоскостной однорежимной балансировки роторов,
  • расширенный с освоением средств и программ балансировки многорежимных роторов, методов поиска источников вибрации на частоте вращения и кратных частотах, ограничивающих эффективность работ по балансировке,
  • полный, с изучением особенностей балансировки на нестабильных частотах вращения ротора, экспертной диагностики и устранения причин ограничений на балансировку жестких и гибких роторов.

Индивидуальные консультации по методам, приборам и программам балансировки роторов, экспертной диагностики причин возникающих ограничений на достигаемую эффективность балансировки, подбор средств балансировки с возможностью виброконтроля и экспертной диагностики.

Диагностика ограничений на эффективность балансировки роторов

Причины возможных ограничений на эффективность балансировки ротора делятся на три основные группы:

  • недостатки привода, который обеспечивает вращение ротора при выполнении операций балансировки, включая несоосность передаваемого на ротор крутящего момента,
  • ошибки и погрешности измерения неуравновешенности ротора при балансировке на станке или амплитуд и фаз оборотной вибрации при балансировке на месте, в том числе из-за вибрационных помех от других работающих агрегатов,
  • появление значительных нецентробежных сил на частоте вращения балансируемого агрегата при балансировке на месте, в том числе от несовпадения оси вращения и геометрической оси ротора, а также от локальных дефектов вращающихся и движущихся узлов (механических передач, рабочих колес, поршней и т.п.).

Недостатки привода, в основном, определяют качество балансировочных станков. Оценить его можно в том случае, если в станке есть возможность на ходу разомкнуть узел передачи крутящего момента и провести расчет коэффициентов влияния и балансировочных масс для двух режимов – принудительного вращения и выбега, но на близких (в пределах 5-10%) частотах вращения. Для этого необходима многоканальная система балансировки, обеспечивающая балансировку роторов в режиме выбега.

Ошибки измерений чаще всего возникают при балансировке роторов на месте в ходе перестановки и крепления датчиков вибрации в точках контроля при последовательном измерении амплитуд и фаз оборотной вибрации. Как правило, это одиночные ошибки, и их можно выявить в автоматическом режиме обработке данных в программе балансировки, если количество точек контроля превышает одну на каждую опру вращения. Типовые погрешности измерения амплитуд и фаз оборотной вибрации для используемых средств балансировки – около 5% для амплитуды и около 10 угловых градусов – для фазы. Абсолютные погрешности влияют на результат балансировки в меньшей степени, так как в расчетах балансировочных масс используются относительные измерения. Важна идентичность измерительных каналов в многоканальных системах балансировки а, при повторных балансировках по коэффициентам влияния, использование того же средства измерения, с которым выполнялась первая.

При балансировке агрегатов на месте эксплуатации влияние на результат измерения амплитуд и фаз оборотной вибрации может оказывать несинхронная вибрация других работающих рядом агрегатов, приводящая к нестабильности получаемых значений. В таком случае следует уменьшать ширину полосы синхронных фильтров в средствах измерения, а, при отсутствии такой возможности (или дополнительно), увеличивать время усреднения получаемых результатов.

Основные ограничения на эффективность балансировки на месте чаще всего определяются дефектами ротора и его связи с другими узлами агрегата.

На первом месте по степени влияния на нецентробежные силы и вибрацию с частотой вращения узла находится несоосность геометрической оси и оси вращения элементов механической передачи («бой» ротора, шестерни, колеса и т.д.). Если передача изменяет частоту вращения ведомого ротора (вала) относительно ведущего (зубчатая, ременная и другие передачи), основным признаком несоосности является амплитудная модуляция оборотной вибрации бездефектного вала частотой вращения дефектного вала, см. рис.12.4. Перед попыткой балансировать ротор на месте дефект следует обнаружить и устранить, так как даже балансировка такого ротора на станке ожидаемого снижения вибрации агрегата на частоте вращения не даст.

Рис. 12.4. В спектре вибрации зубчатой передачи есть признак модуляции оборотной вибрации высокооборотного вала частотой вращения низкооборотного вала. Это указывает на действие двух встречных сил кинематической природы, т.е. возможности балансировки высокооборотного вала составе данной передачи ограничены.

На втором месте по степени влияния на оборотную вибрацию агрегатов находится дефект элемента механической передачи, например, зуба шестерни. В этом случае на агрегат действует ударная сила с частотой вращения ротора (вала) с дефектным элементом передачи, и вибрация агрегата содержит большое число кратных гармоник, см. рис.12.5. Аналогичный результат будет и при дефекте муфты, связывающей два синхронно вращающихся ротора. Перед балансировкой агрегата на месте дефект необходимо обнаружить и устранить.

Рис.12.5. В спектрах вибрации (виброскорости и виброускорения) зубчатой передачи есть признак ударного взаимодействия – большое количество кратных гармоник. Вал (ротор), на который действует удар с частотой вращения, балансировке до устранения дефекта не подлежит

В агрегатах без механической передачи, изменяющей частоту или направления вращения ведомого вала, на первое место по источникам нецентробежных сил на частоте вращения балансируемого ротора выходит несоосность соединяемых муфтой роторов (валов) агрегата. Причиной может быть как несоосность опор вращения (статическая расцентровка валов), см. следующий раздел по центровке валов, так и дефект соединительной муфты со смещением осей вращения валов под нагрузкой (динамическая расцентровка). Перед балансировкой необходимо обнаруживать и устранять причины расцентровки валов. Основным признаком расцентровки роторов является появление импульсной нагрузки один раз за оборот, приводящей к росту вибрации на частотах, кратных частоте вращения ротора.

Следующее место по влиянию нецентробежных сил на оборотную вибрацию агрегата занимает несовпадение геометрической оси ротора с осью вращения в асинхронных электродвигателях. Такое несовпадение принято называть динамическим эксцентриситетом воздушного зазора, а его причиной чаще всего бывают износ подшипника и ошибки восстановления на роторе посадочных мест под подшипники во время ремонта ротора двигателя. В многополюсных синхронных электрических машинах причина повышенной вибрации на частоте вращения – другая, это проблемы с обмоткой возбуждения на роторе, а иногда, в явнополюсных синхронных машинах – перекос полюсных наконечников на роторе.

Основным признаком дефекта является амплитудная модуляция магнитной составляющей вибрации (на двойной частоте питания) частотой вращения ротора. Пример спектра вибрации электродвигателя с таким дефектом приведен на рис.12.6. . Обнаружить данный дефект можно и по появлению признаков модуляции зубовой вибрации электрической машины (см. раздел 15). При обнаружении дефекта перед балансировкой предпочтительным действием является ремонт двигателя с устранением дефекта.

Рис.12.6. В спектре вибрации асинхронного электродвигателя есть признак модуляции магнитной вибрации (на двойной частое питающего напряжения 100Гц) из-за динамического эксцентриситета воздушного зазора. Возможности балансировки ротора на месте ограничены.

В насосах появление сравнимых по величине с центробежными нецентробежных сил, имеющих ту же частоту, определяется взаимодействием потока с рабочим колесом. Основные причины — несовпадение геометрической оси рабочего колеса с его осью вращения (бой рабочего колеса) или локальный дефект одной из лопастей. Это взаимодействие приводит к появлению зависимости производительности насоса от угла поворота рабочего колеса. Большинство центробежных насосов меняет направление потока и потому имеет значительную осевую нагрузку. В таких насосах появление переменной нагрузки приводит к росту осевой вибрации насоса на частоте вращения, которая не может быть снижена путем балансировки рабочего колеса. Повышенная осевая вибрация насоса на частоте вращения, а также на ее гармониках являются признаком дефектов рабочего колеса центробежных насосов, которые устраняются при замене рабочего колеса на бездефектное.

Это должен знать каждый водитель:  Баллонный ключ — сравнительный тест

В осевых насосах таких признаков боя рабочего колеса или дефекта одной из лопастей нет, но, как и в центробежных насосах, можно воспользоваться дополнительным признаком – модуляцией лопастной составляющей вибрации насоса частотой его вращения, как это показано на рис. 12.7.

Рис 12.7. В спектре вибрации центробежного насоса с рабочим колесом, одна из шести лопастей которого имеет дефект, есть признаки дефекта лопасти – повышенная вибрация на кратных гармониках частоты вращения kFвр и модуляция лопастной вибрации Fл частотой вращения рабочего колеса kFвр . Возможности балансировки насоса на месте ограничены.

Рабочие колеса при вращении в потоке воздуха (газа) также создают нецентробежные силы на частоте его вращения при бое рабочего колеса или при нарушении условий обтекания одной (или группы соседних) лопаток. Эти силы также ограничивают эффективность балансировки рабочего колеса, особенно многорежимных по производительности и/или скорости вращения агрегатов. Для обнаружения такого рода сил используется несколько способов, основным из которых является поиск зависимости величины оборотной вибрации от производительности агрегата, изменяемой скачком. Еще один эффективный способ, работающий в агрегатах преимущественно с одним рабочим колесом – анализ соотношения фаз колебаний на разных опорах вращения агрегата, так как дефектное рабочее колесо, в отличие от бездефектного, возбуждает значительные моментные колебания ротора. Наконец, в центробежных нагнетателях для оценки вклада нецентробежных сил, как и в насосах, можно контролировать осевую вибрацию опоры вращения, к которой приложена основная осевая нагрузка нагнетателя.

Простейшие средства и программы балансировки

Существующие средства и программы балансировки можно разделить на три основные группы:

  • простейшие приборы для балансировки однорежимных агрегатов с жесткими роторами, до двух роторов в собственных опорах вращения,
  • системы балансировки для многорежимной балансировки жестких роторов, в том числе многоканальные, с экспертной диагностикой дефектов, ограничивающих ее эффективность,
  • многоканальные системы виброналадки с многорежимной балансировкой жестких и гибких роторов и экспертной диагностикой дефектов.

Простейший прибор для балансировки жестких роторов представлен на рис. 12.8.

Рис. 12.8. Прибор для балансировки роторов на базе сборщика данных — виброанализатора СД-12.

В состав такого прибора должны входить:

  • датчик вибрации,
  • датчик угла поворота ротора (датчик оборотов с одним импульсом на оборот),
  • синхронный фильтр для измерения амплитуды вибрации на частоте вращения,
  • фазометр для измерения разности фаз между выделенной фильтром гармоникой вибрации и меткой на роторе,

Кроме этого необходима программа расчета балансировочных масс по измеренным амплитудам и фазам оборотной вибрации, которая либо встраивается в прибор, либо устанавливается на компьютере.

Прибор в указанной комплектации рассчитан на балансировку «идеального» ротора, на который действуют только центробежные силы, не зависящие от внешних условий, таких как температура, нагрузка на агрегат и другие. Его невозможно использовать для анализа ограничений из-за действия нецентробежных сил на частоте вращения, в частности по приведенным ранее признакам, а, во многих случаях, при замене недоступной плоскости коррекции на доступную или для диагностики дефектов, которые могут появиться при частичной разборке агрегата в процессе установки пробных и корректирующих масс.

Указанные недостатки устраняются, если балансировочный прибор дополнительно может измерять узкополосные спектры вибрации в точках ее контроля, запоминать спектры вибрации одинаковых агрегатов и коэффициенты влияния пробных масс на выбранные точки контроля, а также сравнивать спектры вибрации и коэффициенты влияния нескольких однотипных агрегатов.

Реализовать многие из рассмотренных задач балансировки жестких роторов на месте эксплуатации агрегатов можно, используя виброанализатор серии СД со встроенной программой балансировки (см. рис 12.8), дополненный внешней программой Vibro-12.

Многоканальные системы многорежимной балансировки являются неотъемлемой частью систем виброналадки агрегатов с узлами вращения и рассматриваются в разделе «средства и программы виброналадки».

Для Вашего удобства все статьи нашего сайта по теме «Балансировка роторов на месте эксплуатации» мы собрали в одном месте.
Вы можете прочитать их в разделе Статьи о балансировке роторов на месте эксплуатации

Балансировка колёс в автомобиле

Процедура балансировки колёс используется недавно. Водители пренебрегают ей, поскольку не знают всех тонкостей и преимуществ операции, вспоминая о ней только тогда, когда руль начинает дрожать и вибрировать при каждом повороте. В статье рассказывается о балансировке колёс, что это и зачем её нужно проводить.

Что такое балансировка колёс

Балансировка колёс – это процедура предотвращения дисбаланса между колёсами, дисками, ступицами, деталями подвески и креплениями. Необходимость периодического проведения операции обусловлена центробежной силой.

В процессе балансировки масса колеса располагается равномерно относительно его центра. При правильном выполнении процедуры уменьшается вибрация во время эксплуатации автомобиля, увеличивается срок службы подшипников и автомобильных шин.

Преимущества балансировки колёс:

  1. Комфортная езда на дорогах любого вида и качества.
  2. Отсутствие лишних шумов из автомобильных колёс.
  3. Увеличение эксплуатации колёс.
  4. Удобство в управлении автомобилем на различных скоростях.
  5. Автомобильные шины изнашиваются со всех сторон одинаково и равномерно.

Балансировка колёс требуется любому автомобилю, независимо от состояния дисков, покрышек и новизны модели.

Последствия отказа от балансировки колёс:

  • Частая поломка подшипников.
  • Вибрация руля во время эксплуатации автомобиля.
  • Ранний и неравномерный износ автомобильных шин.
  • Шум в салоне.
  • Скорая неисправность амортизаторов.
  • Небезопасность движения, по причине приобретения каждым колесом своей центробежной силой.
  • От вибрации колёс в запущенных случаях болты выкручиваются, шаровая опора вылетает или отваливается.

Зачем нужно проводить процедуру

Неопытные водители сомневаются даже после приведённых последствий отказа от балансировки колёс, которые могут быть самыми непредсказуемыми: от некомфортной езды до поломки ходовой части автомобиля.

Езда на автомобиле со скоростью 90 км/ч с разбалансированными колёсами четырнадцатого размера всего на 20 г сравнима с ударом по части подвески кувалдой массой в 3 кг. За минуту происходит порядка восьмисот таких ударов.

Вибрации и биения руля являются одними из последствий неотбалансированных колёс

Никто не заставляет проводить балансировку автомобиля, и не существует законов, принуждающих сделать это, но нужно понимать, что отремонтировать машину будет стоить намного дороже.

Дисбаланс и его виды

Дисбаланс – это присутствие в автомобиле неуравновешенных частей, находящихся в движении: ступиц, барабанов и шин, которые изменяют в худшую сторону управляемость транспортного средства.

Из-за неправильной балансировки одного колеса происходит дисбаланс. Центр тяжести колеса должен лежать на оси вращения равноудалённо от всей поверхности.

Если это условие не выполняется, колесо считается неотбалансированным. Важно помнить, что идеально симметричным колесо быть не может, поскольку и на производстве существуют свои погрешности.

Статистический дисбаланс встречается достаточно редко. Он возникает при параллельности оси инерции и оси вращения. Масса неправильно распределена на всей оси вращения. Центр тяжести смещён в одну сторону, а диск по всей поверхности. Этот дисбаланс легко заметить: авто подскакивает на любой скорости, а рулить становиться невозможно. В таких условиях быстро разбивается подвеска.

Динамический дисбаланс возникает чаще статистического. Чаще ему подвержены обладатели широких шин. Дисбаланс возникает из-за несовпадения оси вращения и оси инерции. Во время эксплуатации транспортного средства центр тяжести изменяется, что и приводит к динамическому дисбалансу. Автомобиль начинает бросать в разные стороны при скорости 40 км/ч и больше. Руль начинает дрожать и сильно бить по рукам.

Различают два вида дисбаланса колёс: статический и динамический

Чаще всего встречается комбинированный дисбаланс – сочетание динамического и статического дисбаланса. Такая ситуация некритична. Исправить её легко на балансировочном станке. Для дисков, которые легко плавятся, лучше использоваться современное оборудование с применением лазерной методики.

Технология проведения процедуры

Оборудование

Важно подготовить колёса к процедуре балансировки, а именно тщательно вычистить протектор и диск от песка и грязи. Из-за пренебрежения этим правилом операция может быть выполнена неточно, и её придётся проводить заново. Если в автомобиле уже проводилась балансировка, то мастер перед началом обязан удалить балансировочные грузы.

Очень важно проверить давление в шинах: покрышки не должны быть спущены. Перед балансировкой колёс определяется центр тяжести, который отслеживают станки для балансировки. Устройства могут быть разными: от обычных компьютеров до огромных систем с лазерными датчиками и механизмами для измерения. После определения машина самостоятельно устанавливает балансирующий грузик.

Для проведения процедуры используется балансировочный станок, по ходу процедуры выравнивающий положение колеса по центру оси вращения

Вид балансирующего грузика зависит от типа дисков. Грузики со скобой-крепежом устанавливаются на стальные диски, а с посадкой на внутреннюю часть – на литые диски. В основном они делаются из цинка, свинца или стали.

Масса также зависит от уровня дисбаланса. Масса балансирующего грузика со скобой крепежом варьируется в пределах от 5 до 100 г. Масса груза для литых дисков — от 5 до 60 г.

От массы зависит также и сложность проведения процедуры. Чем больше грузик, тем больше вероятность, что нужно проверить колесо на его внешние качества: состояние протектора и общие геометрические качества, такие как симметричность.

В холодное время года из-за колебания температуры клеящиеся грузики могут отклеиваться, чего не может произойти с набивными

Для штампованных дисков существуют особого вида грузики. Они набиваются между диском и покрышкой, устанавливаясь на ребро диска. Для легкоплавких дисков набивные грузики не подходят. Для такого типа существуют липучки – самоклеющиеся утяжелители на клейкой основе. Они практически незаметны, потому как практически не выбиваются из общего вида. Однако используются они только на идеально ровной поверхности.

Процесс балансировки колёс автомобиля

Процедура балансировки автомобиля стартует со снятия дисков независимо от характеристики модели. Балансировка происходит по методике: снял колесо, отбалансировал, поставил обратно, затем перешёл к следующему. Таким образом проводится полная процедура для всех колёс.

Результат зависит по большей части от мастера, и только небольшая доля обусловлена оборудованием. Если устройство современное, то специалисту остаётся только следить за состоянием резины и ходом проведения процедуры.

После очистки протектора от камней и грязи подбирается пластинка, в зависимости от количества отверстий в диске. Специалист надевает на диск пластинку, хорошо закрутив гайки. После этого он отправляется на балансировку колеса к станку.

Перед проведением балансировки необходимо удалить грязь или камни в шинном протекторе

После определения проблемной зоны начинается процесс установки грузиков. По окончании мастер возвращается к оборудованию и заново проверяет геометрическое состояние колеса. Если процедура прошла успешна, то колесо устанавливается на своё место и берётся следующее. В противном случае процедура повторяется.

Ошибки при проведении процедуры

Случается, что специалисты ошибаются, выполняя процедуру некорректно. Разберём самые распространённые ошибки:

  • Пренебрежение процедурой очистки колеса от камней, песка и грязи. В этому случае добиться значения дисбаланса, приближённого к нулю, не получится.
  • Проведение процедуры на повреждённом колесе.
  • Установка грузиков поверх старых.
  • Недостаточная закрутка гаек и болтов на колесе.

Внимательно следите за выполнением работы специалистов. Даже самые опытные работники допускают ошибки. В конце процедуры убедитесь лично, что балансировка прошла удачно.

Техника безопасности

К самым основным правилам техники безопасности при проведении операции относятся:

  • Балансировку колёс может проводить только специалист, достигший возраста восемнадцати лет, прошедший медицинское обследование и получивший разрешение на выполнение работ данной сложности.
  • Колёса весом более 20 кг перевозятся на тележках или других приспособлениях.
  • Перед процедурой проверяется состояние колеса.
  • Рабочее место должно быть чистым, не захламлённым деталями.
  • Работы не проводятся специалистами в алкогольном или наркотическом опьянении.

Доверять свой автомобиль нужно только квалифицированным мастерам.

Как проверить балансировку колёс

Проверять балансировку колёс удобно при смене сезона. Те, кто хранят сезонную резину, обычно сами её и меняют, поэтому им не составит труда проверить балансировку самостоятельно. Важно, чтобы колеса были чистыми. Для процедуры понадобится обычный мел.

  • Покрутите колесо.
  • Дождитесь полной остановки колеса и чиркните мелком в любом месте. Например, в середине шины.
  • Повторяйте первые два пункта от пяти до десяти раз.
  • Проверьте, где расположены отметки. Если они находятся близко друг к другу, то требуется балансировка.
  • В противном случае с колесом всё хорошо и можно сэкономить на процедуре.

Можно ли балансировать только передние колёса

При балансировке только передних колёс руль перестаёт вибрировать, поэтому многим водителям кажется, что балансировать задние колёса нет необходимости. Это мнение в корне неверно.

Задние колёса не меньше передних получают механические повреждения при езде по неровностям, поэтому их также необходимо балансировать

Несмотря на то, что езда при балансировке только передних колёс становится гораздо приятнее, проблема никуда не уходит. К сожалению, детали и подвеска изнашиваются не только в районе задней части автомобиля.

Как часто нужно делать балансировку

Согласно правилам балансировка проводится через каждые 5000 км. Кроме того, балансировка проводится после ряда событий:

  1. После каждой смены резины: неважно, сезонной или нет.
  2. При появлении вибрации рулевого колеса.
  3. При столкновении с бордюром.
  4. При падении в канаву или яму.

Своевременная балансировка даёт гарантию на продолжительную жизнь подвески и резины, потому отнеситесь к проведению процедуры ответственно.

Статическая балансировка рабочих колес вращающихся механизмов

Каусов М.А — сотрудник редакции

Надежная и исправная работа вращающихся механизмов зависит от большого числа факторов, таких как: соосность валов агрегата; состояние подшипников, их смазка, посадка на валу и в корпусе; износ корпусов и уплотнений; зазоры в проточной части; выработка сальниковых втулок; радиальный бой и прогиб вала; дисбаланс рабочего колеса и ротора; подвеска трубопроводов; исправность обратных клапанов; состояние рам, фундаментов, анкерных болтов и многое другое. Очень часто упущенный небольшой дефект, как снежный ком тянет за собой другие, а в результате выход оборудования из строя. Только учитывая все факторы, точно своевременно диагностируя их, и соблюдая требования ТУ на ремонт вращающихся механизмов, можно добиться безотказной работы агрегатов, обеспечить заданные рабочие параметры, увеличить межремонтный ресурс, снизить уровень вибрации и шума. Планируется посвятить теме ремонта вращающихся механизмов ряд статей, в которых будут рассмотрены вопросы диагностики, технологии ремонта, модернизации конструкции, требованиям к отремонтированному оборудованию и рационализаторским предложениям по повышению качества и снижению трудоемкости ремонта.

В ремонте насосов, дымососов и вентиляторов трудно переоценить значение точной балансировки механизма. Как удивительно и радостно видеть некогда грохочущую и трясущуюся машину, которую усмирили и успокоили несколько граммов противовеса, заботливо установленные в «нужное место» умелыми руками и светлой головой. Невольно задумываешься о том, что значат граммы металла на радиусе колеса вентилятора и тысячах оборотов в минуту.

Так в чем же причина такой резкой перемены в поведении агрегата?

Дисбаланс

Попробуем представить себе, что вся масса ротора вместе с рабочим колесом сосредоточена в одной точке — центре масс (центре тяжести), но из-за неточности изготовления и неравномерности плотности материала (особенно для чугунных отливок) эта точка смещена на некоторое расстояние от оси вращения (Рисунок №1). При работе агрегата возникают силы инерции — F, действующие на смещенный центр масс, пропорциональные массе ротора, смещению и квадрату угловой скорости. Они-то и создают переменные нагрузки на опоры R, прогиб ротора и вибрации, приводящие к преждевременному выходу агрегата из строя. Величина равная произведению расстояния от оси до центра масс на массу самого ротора — называется статическим дисбалансом и имеет размерность x см].

Статическая балансировка

Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.

Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.

Это должен знать каждый водитель:  Setra S431 DT Всем флагманам флагман

Чтобы сбалансировать колесо нужно решить три задачи:

1) найти то самое «нужное место» — направление, на ко тором расположен центр тяжести;

2) определить, сколько «заветных грамм» противовеса необходимо и на каком радиусе их расположить;

3) уравновесить дисбаланс корректировкой массы рабочего колеса.

Приспособления для статической балансировки

Найти место дисбаланса помогают приспособления для статической балансировки. Их возможно изготовить самостоятельно они просты и недороги. Рассмотрим некоторые конструкции.

Простейшим устройством для статической балансировки являются ножи или призмы (Рисунок №2), установленные строго горизонтально и параллельно. Отклонение от горизонта в плоскостях параллельной и перпендикулярной оси колеса, не должно превышать 0,1 мм на 1 м. Средством проверки может служить уровень «Геологоразведка 0,01» или уровень соответствующей точности. Колесо одевается на оправку, имеющую опорные шлифованные шейки (в качестве оправки, можно использовать вал, заранее проверив его точность). Параметры призм из условий прочности и жесткости для колеса массой 100 кг и диаметром шейки оправки d = 80 мм составят: рабочая длинна L = p X d = 250 мм; ширина около 5 мм; высота 50 — 70 мм.

Шейки оправки и рабочие поверхности призм должны быть шлифованными для снижения трения. Призмы необходимо зафиксировать на жестком основании.

Если дать колесу возможность свободно перекатываться по ножам, то после остановки центр масс колеса займет положение не совпадающее с нижней точкой, из-за трения качения. При вращении колеса в противоположную сторону, после остановки оно займет другое положение. Среднее положение нижней точки соответствует истинному положению центра масс устройства (Рисунок №3) для статической балансировки. Они не требуют точной горизонтальной установки как ножи и на диски (ролики) можно устанавливать ротора с разными диаметрами цапф. Точность определения центра масс меньше из-за дополнительного трения в подшипниках качения роликов.

Применяются устройства для статической балансировки роторов в собственных подшипниках. Для снижения трения в них, которое определяет точность балансировки, применяют вибрацию основания или вращение наружных колец опорных подшипников в разные стороны.

Самым точным и в то же время сложным устройством статической балансировки являются балансиро вочные весы (Рисунок №4). Конструкция весов для рабочих колес приведена на рисунке. Колесо устанавливают на оправку по оси шарнира, который может качаться в одной плоскости. При повороте колеса вокруг оси, в различных положениях его уравновешивают противовесом, по величине которого находят место и дисбаланс колеса.

Методы балансировки

Величину дисбаланса или количество граммов корректирующей массы определяют следующими способами:

методом подбора, когда установкой противовеса в точке противоположной центру масс добиваются равновесия колеса в любых положениях;

методом пробной массы — Мп, которую устанавливают под прямым углом к «тяжелой точке», при этом ротор совершит поворот на угол j. Корректирующую массу вычисляют по формуле Мк = Мп ctg j или определят по номограмме (Рисунок №5): через точку, соответствующую пробной массе на шкале Мп, и точку, соответствующую углу отклонения от вертикали j, проводят прямую, пересечение которой с осью Мк дает величину корректирующей массы.

В качестве пробной массы можно использовать магниты или пластилин.

Метод кругового обхода

Самым подробным и наиболее точным, но и наиболее трудоемким является метод кругового обхода. Он применим и для тяжелых колес, где большое трение мешает точно определить место дисбаланса. Поверхность ротора делят на двенадцать или более равных частей и последовательно в каждой точке подбирают пробную массу Мп, которая приводит ротор в движение. По полученным данным строят диаграмму (Рисунок №6) зависимости Мп от положения ротора. Максимум кривой соответствует «легкому» месту, куда необходимо установить корректирующую массу Мк = (Мп max + Мп min )/2.

Способы устранения дисбаланса

После определения места и величины дисбаланса его необходимо устранить. Для вентиляторов и дымососов дисбаланс компенсируется противовесом, который устанавливается на внешней стороне диска рабочего колеса. Чаще всего для крепления груза используют электросварку. Этот же эффект достигается снятием металла в «тяжелом» месте на рабочих колесах насосов (по требованиям ТУ допускается снятие металла на глубину не более 1 мм в секторе не более 1800). При этом корректировку дисбаланса стараются проводить на максимальном радиусе, т. к. с увеличением расстояния от оси, возрастает влияние массы корректируемого металла на равновесие колеса.

Остаточный дисбаланс

После балансировки рабочего колеса из-за погрешностей измерений и неточности устройств сохраняется смещение центра масс, которое называется остаточным статическим дисбалансом. Для рабочих колес вращающихся механизмов нормативная документация задает допустимый остаточный дисбаланс. Например, для колеса сетевого насоса 1Д1250 — 125 задается остаточный дисбаланс 175 г х см (ТУ 34 — 38 — 20289 — 85).

Сравнение методов балансировки на различных устройствах

Критерием сравнения точности балансировки может служить удельный остаточный дисбаланс. Он равен отношению остаточного дисбаланса к массе ротора (колеса) и измеряется в [мкм]. Удельные остаточные дисбалансы для различных методов статической и динамической балансировки сведены в таблицу №1.

Из всех устройств статической балансировки, весы дают самый точный результат, однако, это устройство самое сложное. Роликовое устройство, хотя и сложнее параллельных призм в изготовлении, но проще в эксплуатации и дает результат не многим хуже.

Основным недостатком статической балансировки является необходимость получения низкого коэффициента трения при больших нагрузках от веса рабочих колес. Повышение точности и эффективности балансировки насосов, дымососов и вентиляторов можно достичь методами динамической балансировки роторов на станках и в собственных подшипниках.

Применение статической балансировки

Статическая балансировка рабочих колес эффективное средство снижения вибрации, нагрузки на подшипники и повышения долговечности машины. Но она не панацея от всех бед. В насосах типа «К» можно ограничиться статической балансировкой, а для роторов моноблочных насосов «КМ» требуется динамическая, т. к. там возникает взаимное влияние небалансов колеса и ротора электродвигателя. Необходима динамическая балансировка и для роторов электродвигателей, где масса распределена по длине ротора. Для роторов с двумя и более колесами, имеющих массивную соединительную полумуфту (например СЭ 1250 — 140), колеса и муфта балансируются отдельно, а затем ротор в сборе балансируют динамически. В отдельных случаях длят обеспечения нормальной работы механизма необходима динамическая балансировка всего агрегата в собственных подшипниках.

Точная статическая балансировка — это необходимая, но иногда не достаточная основа надежной и долговечной работы агрегата.

Программная система для записи и 3D-визуализации танцевальных движений

Рубрика: Информационные технологии

Дата публикации: 25.05.2020 2020-05-25

Статья просмотрена: 59 раз

Библиографическое описание:

Галяткина Г. А., Зуева И. И. Программная система для записи и 3D-визуализации танцевальных движений // Молодой ученый. — 2020. — №21. — С. 119-120. — URL https://moluch.ru/archive/207/50793/ (дата обращения: 23.11.2020).

В данной статье описывается разработка системы захвата движений с помощью датчиков для танцевальной индустрии, анализ области применения и дальнейшее развитие.

Захват движения (Motion capture) — это технология для записи движений предметов или актеров, которые затем используются в компьютерной графике. Тело человека имеет сложное строение, поэтому записывать движения актеров гораздо проще, чем создавать трехмерные модели, которые необходимо анимировать вручную.

В настоящее время технология захвата движения представляет особый интерес в таких областях как медицина, спорт, игровая индустрия, киноиндустрия, охранные системы, робототехника.

Есть два принципиальных подхода к захвату движений: анализ видеопотока и подготовка данных о движении датчиками на местах крепления. Плюсы первого подхода заключаются в простоте внедрения способа. Можно быстро подготовить пространство для получения сырых данных. Минусами является повышающиеся требования к числу кадров в секунду у камеры для более детального захвата движений, большой объем хранения данных, сложность переноса камеры как оборудования для получения данных. Плюсами второго подхода являются: мобильность, легкость оборудования и относительно малое число передаваемых данных. Минусами является сложность интерпретации данных.

Технология захвата движения позволяет создать точную копию движения сохранить ее в виде трехмерной модели. Применив ее в танцевальной индустрии, можно не только увековечить конкретный танец, но и создать систему, способную помочь в создании новых танцев путем записи отдельных движений и их последующей компоновки.

С точки зрения обучения танцу, данная технология делает возможным рассмотрение движения со всех сторон, тем самым сокращает вероятность появления ошибок и упрощает работу хореографа.

Существующие решения либо имеют слишком высокую цену для среднестатистического преподавателя танцев, либо требуют специальных навыков для того, чтобы работать с программным обеспечением.

Данная система представляет собой программный модуль для ОС Windows, в котором реализован основной функционал захвата и представления движения в виде 3D-модели, а также реализована функция сохранения и воспроизведения. Система включает в себя два рабочих модуля: модуль сбора и обработки информации с датчиков движения и модуль построения и визуализации 3D-модели. Работа модулей — это взаимосвязанный процесс.

  1. Программный модуль для обработки данных, поступающих с датчиков, обеспечивает следующие возможности:

– синхронный прием данных со всех датчиков;

– запись полученных данных в файл;

– проверка корректности полученных данных;

– отправка данных в модуль построения модели.

Данные, поступающие с датчиков, отражают как координаты, угловое ускорение, время, так и другую информацию, которая в данном проекте не рассматривается. Поэтому необходимыми параметрами являются координаты каждого датчика (X, Y, Z), относительное время (время записи движения), угловая скорость и номер датчика. Все данные считываются одновременно, без задержек по времени, чтобы обеспечить точность записи движения.

Следующий шаг в обработке — это проверка полученных данных на наличие ошибок считывания. Для этого мы вычисляем по координатам расстояния между заранее выбранными датчиками. Удобнее выбирать датчики, располагающиеся на несгибаемых участках тела, например, плечах. Расстояние между ними измениться не может, поэтому по ним можно определить исправность работы датчиков. До начала записи мы заранее определяем величину этого показателя с помощью измерительной ленты и устанавливаем допустимую погрешность. Если вычисленное расстояние удовлетворительное, то данные проходят дальнейшую обработку, иначе система уведомляет пользователя о неисправности показаний.

Последний этап обработки данных — это задание им представления, которое сможет считать внешний модуль, например, текстовый файл. Затем происходит передача данных второму модулю системы.

  1. Программный модуль для записи и отображения 3D-моделей танцевальных движений представляет собой пользовательский интерфейс, а также обеспечивает выполнение следующих функций:

– запись танцевальных движений;

– визуализация движений путем построения 3D-модели;

– сохранение записанных движений;

– просмотр записанных движений;

– возможность удаления записанного движения.

При нажатии на «Запись» происходит обращение к модулю, обрабатывающему данные с датчиков. После получения текстового файла с необходимой информацией строится 3D-модель. Остальные кнопки, а именно «Сохранить», «Просмотр», «Удалить», позволяют работать непосредственно с библиотекой танцевальных движений. Выполнение функций обеспечивается нажатиями кнопок действий.

Дальнейшее развитие системы заключается в совершенствовании визуализации танцевальных движений за счет детального построения 3D-модели человеческого тела. Также рассматривается добавление новых функций, таких как просмотр записываемого движения в режиме реального времени, формирование танца из отдельных записанных движений, объединение 3D-моделей для создания танцевальной пары.

Балансировка ротора

ДИНАМИЧЕСКАЯ БАЛАНСИРОВКА РОТОРОВ НА СТАНКЕ С КАЧАЮЩЕЙСЯ РАМОЙ

Балансировка роторов – это процедура, необходимая, если вращающаяся часть машины не уравновешена. В этом случае, при вращении появляется сотрясение (вибрация) всей машины. В свою очередь, это может привести к разрушению подшипников, фундамента и, впоследствии, самой машины. Чтобы избежать этого, все вращающиеся части должны быть отбалансированы.

Сам по себе ротор — это вращающаяся деталь, удерживающаяся при вращении с помощью несущих поверхностей в опорах (цапфы и др.). Осью ротора является прямая, соединяющая центры тяжести контуров на поперечных сечениях центра несущих поверхностей. Различают детали нескольких видов:

Различают балансировку роторов статическую и динамическую. Первая выполняется на призмах, вторая при вращении балансируемой детали.

Специалисты компании «КарданБаланс» предлагают услуги по качественной балансировке ротора. Наши центры оснащены современным оборудованием, гарантирующем точность балансировки. Этого добиться достаточно сложно, ведь она должна полностью совпадать с точностью изготовления ротора. Все работы осуществляются на стендах собственной разработки, которые дают точность балансировки, впятеро превышающую заводские требования!

В данном разделе вы сможете ознакомиться с основной технической информацией относительно способов динамической балансировки ротора (способ исключений, метод Б.В.Шитикова). Полезный практический материал, который даст основное представление о проблеме. Что такое гидравлическая балансировка, что из себя представляет станок для балансировки колес и другая информация понятно изложена на нашем ресурсе. Также Вы сможете воспользоваться нашими услугами, которые включают ремонт карданов, балансировку грузовых колес, коленчатого вала и пр. Сколько стоит балансировка и другие работы описано в разделе «Услуги и цены».

Содержание

1. ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ

При вращении m (массы) вокруг точки (неподвижной) с w (угловая скорость) F (центробежная сила инерции) этой массы:

(1.1)
где а n – нормальное ускорение массы; – расстояние от оси вращения до центра массы. При перемещении массы F будет изменять направление и оказывать воздействие (вибрационное) на опоры и через них на конструкции, прикрепленные к стойке. D (дисбаланс) векторная величина, которая равна произведению неуравновешенной массы на эксцентриситет (радиус-вектор центра массы). Величина измеряется в гр/мм.

Причем векторы « и «е» коллинеарные величины.

В векторном виде формула имеет следующий вид:

Пропорциональными друг другу оказываются векторы F и D.

2. НЕУРАВНОВЕШЕННОСТЬ РОТОРА И ЕЕ ПРОЯВЛЕНИЕ

Во всех случаях неуравновешенности ротора, силы инерции его масс создают динамические нагрузки. Устраняются они перераспределением масс (установкой противовесов).

Динамическая балансировка осуществляется с помощью специального станка, оснащенного качающейся рамой

3. Балансировка ротора способом исключений

Для того, чтобы определить параметры массы (корректирующей) в плоскости П, ротор устанавливают на станке и назначают эксцентриситет массы. В плоскости намечается окружность, причем ее центр должен совпадать с геометрической осью вращения. Радиус принимают равным выбранному эксцентриситету. Окружность делится на 4 части. Мастику (пластилин) прикрепляем так, чтобы центр кусочка совпал с точкой 1. Приведем ротор во вращение и измерим амплитуда колебаний. Показатель записываем возле точки 1.

Переносим мастику в точку 2, разгоняем ротор и опять фиксируем его амплитуду. Записываем ее. Фиксируем остальные 2 точки.

Сравниваем амплитуды до тех пор, пока они не окажутся наименьшими. Точка К, найденная нами, определяет конечное положение массы корректирующей. Противоположная точка H – неуравновешенная масса.

Теперь начинаем менять массу мастики на точки K и измерять колебания ротора. Так мы найдем величину корректирующей массы.

4. БАЛАНСИРОВКА РОТОРА СПОСОБОМ Б.В. ШИТИКОВА

Установим ротор на раму и разгоним его. После это зафиксируем амплитуду A1.

В точку П1 установим дополнительную массу mg с эксцентриситетом eg. При резонансе фиксируем амплитуду AS.

Переставляем массу в противоположную точку и фиксируем вторую амплитуду. Обозначаем точки на плоскости в соответствии с неравенством, при котором первая амплитуда больше второй.

По 3-м амплитудам строим параллелограмм и находим четвертую амплитуду и угол

Используя формулу, определяем коэффициент пропорциональности массы

m = А g / D g = А g /( m g e g ) ,

Определяем дисбаланс масс

Теперь задаем величину массы (корректирующей) из равенства дисбалансов и находим нужный эксцентриситет

D к =D 1 е к =D 1 /m к .

Осталось определить точки установки грузов и пробными пусками определить остаточную амплитуду, а также оценить качество уравновешивания в плоскости.

В компании «КарданБаланс» вы можете купить карданный вал Шевроле Нива, карданный вал УАЗ, карданный вал Мерседес Вито, а также комплектующие для других автомобилей. Мы осуществляем не только продажу запчастей, но и их последующую установку.

Понравилась статья? Поделиться с друзьями:
Всё про автомобили
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: